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Fig. 4. Frequency characteristics at different supply voltages. Triangles mark

data recorded for operation at – 4.5 V, open circle at – 5.0 V, and closed
circle at – 5.5 V.
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Fig. 5. Frequency characteristics at different supply voltages. Triangles mark

data recorded for operation at – 6.3 V, open circle at – 7.0 V, and closed
circle at – 7.7 V.

Iv. SUMMARY

New 2.0–8.0 GHz and 6.0–10.5 GHz dynamic frequency di-

viders have been developed. The divider was constructed with a

double-loop connected pair of differential amplifiers. The

frequency divider wasoperated fromone voltage supply at –5V,

or –7 V with +10 percent voltage supply fluctuation. This

divider overcomes the weak points of conventional dynamic

dividers, which need two voltage supplies and precise supply

voltage control. This divider operates at a 50 percent higher

frequency than static dividers.

Fig. 6. Input rmd output waveforms of the frequency divider. Top: input
waveform. Bottom: output waveform. 20 dB attenuator inserted between
D.U.T. and sampling oscillator. Vertical axis: 50 mV/div. (input); 10
mV/div. (output). Horizontal axis: 100ps/div.
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Properties of Shielded Cylindrical

Quasi-TEOnm-Mode Dielectric Resonators

JERZY KRUPKA

Abstract — Comparison of the Rayleigh–Ritz method and the mode-

matcfring method for computations of quasi-TEOn~ -mode frequencies and

unloaded Q factors of shielded dielectric resonators is presented. Rigorous

bounds for the true quasi-TflOn~ -mode frequencies are assessed. Influence

of various parameters on the resonant frequencies, unloaded Q factors,

and the temperature coefficients of the resonant frequency is demonstrated

for many shielded dielectric resonator stmctnres. Different approaches to

unloaded Q factor computations are discussed and numerically compared.
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I. INTRODUCTION

During the last two decades many rigorous methods of analyz-

ingdielectric resonators (DR’s)have been developed, such as the

mode-matching method [1]–[4], the finite element method [5], [6],

the finite difference method [7], and the Rayleig&Ritz method

[8], [9]. However, studies comparing various methods have not

appeared in the literature yet.

The pu~ose of this paper is twofold. The first is to compare

the results of computations of the resonant frequencies and

unloaded Q factors QU of quasi-TEO~~-mode DRs using the

mode-matching and Rayleigh– Ritz techniques. The second is to

present numerical results illustrating the influence of various

parameters on the resonant frequencies, QU factors, and the

temperature coefficients for many shielded quasi-TEOnn-mode

DRs. The mode-matching and Rayleigl-Ritz methods have

been chosen for analysis, since they provide lower and upper

bounds for the true resonant frequencies of lossless quasi-

TEOn m-mode resonant systems. Therefore in such cases the accu-
racy of computations can be rigorously assessed.

II. THEORY

A. Methods of Unloaded Q-Factor Computations

Applications of the mode-matching method and the

Rayleigh-Ritz method for computation of the resonant frequen-

cies and unloaded QU factors of cylindrical quasi-TEoH~-mode

DRs have been described in the literature, e.g. [1]-[4], [8], [9].

Since for Qti-factor computations we have certain alternative

approaches, we consider this problem in detail. The resonant

system we are concerned with is sketched in Fig. 1. The most

general approach of QU-factor computation is a conception of the

complex frequency which is introduced in Maxwell’s equations

and then in the characteristic equation. This method makes is

possible, in the source-free region of the resonant system, to

determine simultaneously the resonant frequencies (f =

Re(ti)/2n) and QU factors (QU = Re(a)/21m(co)) of the sys-

tem. All losses can be simultaneously considered. Dielectric losses

and conductor losses can be represented in the same manner as

imaginary parts of permittivities [4]. Since this method is com-

plicated for low-loss systems (nonradiating systems whose fre-

quencies do not depend significantly on losses), other methods of

Q.-factor computation are commonly used. Lossless systems

containing only perfect conductors and dielectrics are considered

as the first step in these methods, and the resonant frequencies

and the field distributions of the systems are found. Then, as the

second step, the QU factor is computed using the definition:

QU = u (the energy stored)/(the average power dissipated), as-

suming that for 10ssy resonant systems the electromagnetic field

distributions remain the same as for the lossless systems. Then we

can express the reciprocal of the QU factor as follows [10]:

(1)

Qil= i Pe,tanl (2)
i=l

QC = A/R, (3)

Fig, 1

where

I

s

R
-“ -

E, H

Cylindrical dielectric resonator on a substrate m a metal shield.

number of subregions (~) of the resonant structure

having different loss tangent (tan 8,) values,

surface of the metal shield.,

surface resistance of the metaf shield,

electric and magnetic fields of the lossless resonant

system.

The coefficients pei (called the elect tic energy filling factors) and

A, which appear in the above equat; ens, depend only on permit-

tivities and on relative dimensions of the system, so the results

for pe, and A are representative for resonators operating at any

frequency value. There are two methods for evaluation of the

integral ratios appearing in (4) and (5). In the first the electro-

magnetic fields are substituted into (4) and (5) and integrations

are performed directly. In the second, perturbation theory is

used. Cavity material perturbation theory is used for pet compu-

tations [3] and cavity wall perturbation theory (incremental

frequency rule) [11] for A-factor computations. In the last case,

the theory is valid only for resonant systems whose normal

components of the electric field vanish on the metal shield. We

can also mix different formalisms. For example, depending on

dielectric losses, the Qd factor can be computed using complex

frequency formalism, while the QC factor, depending on conduc-

tor losses, can be computed by means of perturbation theory.

B., Methoak of Temperature Coefficient Computation

Due to temperature variations, ea~ch material expands with its

own temperature expansion coefficient and each dielectric con-

stant changes its value with its own temperature coefficient of

dielectric constant. When we evaluate all the differentials for the

resonant system shown in Fig. 1, we obtain the following formula

for the relative change of frequency due to temperature [10]:

‘!f = cLaL + Cbab + Chah + cLlffLl + C,,T,, + ccr,Tcr, (6]

where the a‘s are the temperature expansion coefficients and the

r‘s are the temperature coefficients of frequency or dielectric

constants. The C coefficients can be evaluated numerically as

Iaf 8X af x

“=7 -7=’Z” T (7)

where x denotes any parameter (dimension or permittivity).

Usually the metal shield is made of homogeneous metal and

the dielectric of the DR is isotropic so a~ = ab = am and ad =



776 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 4, APRIL 1988

= ad. Then we can rewrite (6) as follows:

r = cm,~~ + C~a~ + CLlaLl + Ccrrer

f
+ &T,,. (8)

where

Cd=cu+ch

cm=cb+cL.

It is well known that if al dimensions of a resonant system are

increased by a certain factor, the resonant frequency of the

system decreases by the same factor. As a result, the coefficients

Cm,, Cd, and CLI satisfy the following equation:

cm+cd+cL, =–l. (9)

If two coefficients are known (one if I,l = O), the remaining one

can be calculated from (9). The coefficients Cc, and C,,. are

related to the electfic energy filling factors. It can be proved from

the material perturbation theorem that [3]

lcczl=(2we/we,) -l=pe,/2. (lo)

The coefficients CL, C~,, and C~l are related to the A factor. We

can prove from the cavity wall perturbation theorem that

A =qqoL/[2(lcLl+ lcL1lI,/L1 + lchlL/’b)] (11)

(for L,= O, [Cfi lL/h instead of lC1<llL/Ll must be substituted

in (11)).

III. RESULTS OF COMPIJTATIONS

Most numerical results are presented in generaf form indepen-

dent of absolute dimensions, physicaf constants, and loss parame-

ters. Since for cylindrical rod DRs, the TEoll-mode frequency,

denoted in this paper by f,O~, is usually known, we have reduced

the TE018 (quasi-TEOll) frequencies with respect to f,o~ values.

Higher order quasi-TEO.~- mode frequencies have been reduced

with respect to the velocity of light. For cavity-type resonant

systems the classicaf Rayleigh–Ritz method (R) has been used

with empty cavity TEO.~- mode basis (100 basis functions), while

for open-type systems the modified Rayleigh-Ritz method (MR)

[9] has been used with rod resonator TEOfl~-mode basis (25 basis

functions). The radiaf mode-matching method (M-M) has been

used with nine functions in each of the two complementary

regions. For these numbers of basis functions all methods require

approximately the same time for computation (approximately 10

seconds on a CDC 6600 computer per frequency value). The

computer program for the modified Rayleigh–Ritz method has

been written in complex version, while two others are in real

versions. Some of the results have been obtained by a complex

version of the mode-matching method (the computer program

has been written by Sz. Maj),

We denote different methods of A and p,, factor computa-

tions as follows: C for the complex frequency method, I for the

incremental frequency (perturbation) method, and D for the

method using direct integration of the electromagnetic fields.

Table I gives results of computations for a cavity-type reso-

nator having c, = 10, a/h =1, b/L =1, and I,l = O. It is seen

that the frequency values computed by the Rayleigh–Ritz method

and by the mode-matching method agree to within 0.15 percent

for any p = h/L value. The maximum discrepancy appears for

p = 0.25. Also, A-factor values agree to within 0.35 percent if the

incremental frequency rule is used in both methods. If the direct

integration method (D) is used, differences in ,4-factor values

obtained by the mode-matching and Rayleigh–Ritz methods are

somewhat greater. For interior modes (modes whose energy is

predominantly concentrated in the dielectric) the electric energy

TABLE I

THE COMPUTED VALUES OF NORMALIZED TEola-MoDE

FREQUENCIES f\f,a, THE ELECTRIC ENERGY RATIO p=- 1, A, AND

Cm COEFFICIENTS VERSUS h \L FOR A DR SITUATED IN A

CYLINDRICAL CAVITY
——--—. —._ _______

.—

w

I-L
0.45 05390

020 0 74{6
0.2508030
030 08184
035 0.8253
040 0.83i2
045 08377
050 0.8452
060 08660
0.70 08989

080 09540
09040304
{00 i 1362

I

TnT
R M-M(I) R(I) R(D) M-H(I)

00000 - - 00 6657
0539036437 %0,20 38080 6608
0.7{48 14.42 44.76 1480 623.3
0,8042 1.443 !442 1443 5191
08188 1174 i471 1.171 ‘544.7
0825~ 1.fi8 +~~g fif8’ 5165
08315 f 092 i-092 ~092 5f5 3

J
08379
08454
08661
0.8989
0.9510
10304
f. 4362I

! 074
t 060
f 038
1021
t 008
f 001
4000 1

4074 1074 5408
f 060 ~ 060 50f 9
4038 {038 4641
4024 1024 3958
1008 1008 3144
{001 (001 2400
1000 4000 240.1

*

A cm
F 1) R (b M-M

6657 665.7 -1.000

56{,2 6608 -0.994
6244 624.5-0.885
5493 5298 -Olgi

L
—

5!6.5 501.8 -0065
517.0 5~6.8 -o, o54
5156 5221 -0,059
5418 505.4 -0,074
5023 5020-0.098
4647 460.5-0479
3966 400.8-0.321
3420 3080-0543
240.5 24’5-0,829
2401 2fo.1 -1000

c. = 10, a/h = b/L, L, = O. M-M denotes the mode-matching method

results with N = 9. R denotes the Rayleigh-Ritz method results with

N = 100.

TABLE II

THE COMPUTED VALUES OF NORMALIZED QUASI-TEOnm-MODE

FREQUENCIES oL/c VERSUSTHE NUMBER OF BASIS FUNCTIONS N

FOR THE MODE-MATCHING METHOD

1

TE~{7.
L

TE~2{

7{5565
7.2367T
727404
728842
7.29109
729072
7.3{309

TEoz2

1
TFo~s T’EO~,

7.90860 819564
7,91231 8.21483
790435 821437
789954 8.21781
799744 8.22207
7.89’Tff 8.22448
789722 822449
794563 8.25259

The DR IS situated in a cylindrical cavity. c.= 10. a/h = b/L= 1.00.

h \L = 0,25. M-M and R have the same m&nings as in’ Table I

filling factor values, computed by both methods, agree to within

0.1 percent. Greater discrepancy occurs for exterior modes.

Table II gives results of computations of higher order quasi-

TE Onm-mode frequencies for the same resonant system and p =

0.25. Convergence of the mode-matching method is investigated

versus number of basis functions (N). In the last row of Table II

results obtained by the Rayleigh-Ritz method are shown. It is

seen that the discrepancy between frequency values obtained by

these two methods is not greater than 0.6 percent for the first six

modes. Results of higher order frequencies and the electric en-

ergy filling factor computations versus p = h/L values are shown

in Fig. 2. Computations were performed by the Rayleig&Ritz

method. We can observe in Fig. 2 that the frequency curves show

the intervals of plateaus alternating with intervals of steep slope.

In the intervals of steep slope the p, values are close to unity and

the modes are of the interior type, while in the intervals of

plateaus the modes become of the exterior type. This phenome-

non has already been reported in [1] and [12].

Results of computations for the resonant system having c,= 35,

a/h =1, b/L =1, and L1 = O are presented in Table III. For

p >0.25 results of computations agree very well (similarly as for

C. = 10). For p <0.20, the differences increase. This is under-

stood, since for small p values and high ~, values the conver-

gence of the classicaf Rayleigh-Ritz method becomes poor [8].

We can observe that when the DR is placed at the cavity bottom,
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Flg 3. Normalized TEO1o-mode resonant frequency (f/f&), the electric
energy filling factor values p,, and A-factor vahres versus the h/L ratio for
a cylindrical DR situated centrally in cylindrical cavity. c, =35, a/h=l
The results have been obtained by means of the Raylelgh–Wtz method with

Fig 2. The lowest quasi-TEO.~ N = 100.
-mode normahzed frequencies (tiL/c) and

the electric energy filling factor vshres ~e versus the h/L ratio for a
cylindrical DR situated at the cavity bottom. c,=1O, a/h=l, b/L=l. TABLE IV

The results have been obtained by means of the Raylelgh–IUtz method with THE COMPUTED VALUES OF NOrmaliZed TEO1*-MODE
N = 100.

TABLE III

THE COMPUTED VALUES OF NORMALIZED TE018-MODE

FREQUENCIES f/f&, THE ELECTRIC ENERGY RATIO p,- 1, A, AND

Cm COEFFICIENTS VERSUS h\LFORA DRSITUAIED INA

CYLINDRICAL CAVITY
.——.— .-

ryfL +/
M-M

000 00000
OtO 06692

Of25 08271
045 08416
020 08429
025 08440
030 o.3q49
040 08487
050 0.8567
060 0.8722
0.70 0.9006
080 0.94’37
0.90 f.0255
foo 44343

‘frod ?e-’

c! M-M(1) R(1) R(D) M-M(I)
? 0000 - - - 665,7
? 6692 659,2 f440. ~443. 661.0
08332 2754 $5.37 15.48 4.282
0.8525 104’4 4.C46 {.047 286.4
0.8470 t 028 f.029 {.029 287.5
0,8459 1.024 1.0Z5 I 025 237.2
08459 4.02’2 f 023 i 023 287.0
08491 1.049 folg f o~q 2865
08568 1.t-7f3 ~.044 ~044 2796
0!3723 40’40 fo~o {.040 2590
09006 t.006 f 006 4.006 2195
09487 i.oo3 f 003 {,003 170.4
i0255 f 000 4000 i<ooo 4294
14313 f.000 1.000 {.000 412.5

A
R(1)

::; ;

580.4
2654
278.2
287.2
2885
287.0
280.2
259,8
220.8
f7{5
!298
~ I

cm
R(D) M-M
6657 -1 000
663.4 -09q8
586 5 -0 5?8
2535 -0009
286.0 -0006
2970 -ooo6
2q9.9 -0009
2’34 ~ -0026

2W.6 -0,065
257 ~ - 0f44
223.2 -O, 2L?8
1690 -0.5{7
f30.2 -0848
lj25-f OOO

cr = 35, a/h = b/L =1.00, L, = O. M-M and R have the same mean-

ings as in Table 1.

as was the case for the resonant systems considered so far,

A-factor values are smaller than that of the empty cavity. If the

DR is placed far from the cavity walls, A-factor values c~ be

much higher, as is seen in Fig. 3, which presents results of

computations fot a DR situated centrally in a cylindrical cavity.

The Rayleigh–Ritz method has been used for computations.

Maximum A-factor values appear for cavity dimensions 5–6

times greater than the DR ones (p = 0.15–0.20). For these p

values the TEOla mode is intenor since the electric energy filling

factor values are high (p= > 0.85). For p values smaller than 0.15,

the TE018 mode becomes exterior and A-factor values tend

rapidly to the value characteristic of an empty TEO1~ mode

cavity.

In Table IV results of computations for open-type nonradiat-

ing DR structures are presented. For all cases considered in

Table IV, discrepancy between frequency values obtained by the

modified Rayleigl-Ritz method and the mode-matching method

is not greater than 0.15 percent. -4-factor values agree to within

FREQUENCIES f/f,O~, THE ELECTRIC ENERGY RATIO p,- 1, A, AND

Cm COEFFICIENTS VERSUS L/ArOd FOR AN OPEN-TYPE DR

—-—..

ql %.(
.2872
.30

0,25 ::;

.45

.50

.{744

.20

.25

050 :#!

.40

.45

.50
.!47:
.45
. ‘to

1.00:::
.35
.40
.45
.50
.102
.45
.20

1.50:;:
.35
.40
.45
50

STRUCTURE

f/+rod I Pi4 I A~
M-M

10000

09927
0,9773
09747
0,9685
09660
f 0000
09583
09357
0 9Z97
0927.2
0.9260
0,9251
m
!.0000
0.8934
08587
fyw~

08445
08436
0 843(

g&v_
10000
08314
0 796a
0.7871
07834
0.78{7
07808
07802
m

FM(I) R(I) R(c) M-M(I) R (I)

1032 t 032 1,032 9599 959,9
4033 { 033 f 033 !077.7 10833
f.042 4.042 f 042 1739.2 {744.7
t 054 1 0?34 f O!jO 2022,4 2038.5
!.064 4.064 4.0’59 208{.0 2096.6
i.084 {, 079 4,074 lg54.o 20022
{.0+2 1,0{2 to12 294.4 294,4
(.045 1,045 f 0!6 445,7 447.4
4.022 4,022 !,0[!2 660,4 661,7
( 026 4026 4,0:!7’ 722,0 7232
4.0’30 f,029 {,029 737.3 Y39.2
1.033 t032 f,r132 74 {,0 743,5
!.037 1.035 t,o:)4 743.9 743,4
i 042 f038 f.O’j6 74‘3.6 74{5
!,004 !,004 1.004 { { 9.6 ijg~
1.006 { 006 ! 007 ( 89.7 {90.3
{,013 ( 043 1.0’4 ?-62,6 262.8
4,018 4048 f.0~8 280,5 280,7
i 024 ~.020 LoiN 284.9 2850
1,023 4,022 1.022 286.4 286 {
4,025 1,024 f .024 285.9 286.6
!.026 4,025 f 025 285.5 286,3
I 029 1.025 ~.o:?G 286.4 2%6.7
f,oo2 !,002 1,002 84.0 84.0
{.007 4,007 1.007 445.0 445.3
to13 f,043 4.0’14 { 74.2 (’744
{048 4.0{7 4.048 481,4 ! 8{.6
1024 i. 020 f.o~~4 { 83.4 i 83.4
f.023 1.022 1023 483.8 f 84.0
f,025 !024 ! 024 f8’3.9 i 84.0
!.027 4,025 401!5 184.3 { 84.3
!,029 4.026 40/6J !85.0 f838

cm
?(D) m-m
9599 -.478
0746 -.{ 56
7544 -.059

!058.3 -.033
!{40,4 -,024
!4 37,9 -.030

294,4 -.344
444.7 -.489
667.4 -.054
730.5 -.023
737.2 -.0{3
76Q 3 -.008
744.3 -.009
744.3 -.044
f!9.6 -.582
190.7 -.278
262.8 -.077
260.4 -.029
286.9 -.045
286.2 -.03,0
293.7 -.006
286.9 -.004
2796 -.004

ftq.o -.720
445.6 -.249
{75.0 -.082
i 83.6 -.035
f 8%0 -,019
i88.1 -.o!~
483.5 -.007

484.4
(80.3

-.040
-.007

cr = 35, L, = 4), b = m. M-M denotes the mode-matching method

results with ~ = 9. R denotes the modified Rayleigh–Ritz me~hod with

N = 25.

0.75 percent (except one value for a/h = 0.25 and L/XrO~ = 0.50)

and p, factor values agree to within {0.40 percent.

The results of normalized TEOl~-mode frequency computations

versus L/k,O~ values tie presented in Fig. 4 together with
experimental data for one DR structure. Experiments have been

performed for a DR having h = 4.00 mm, a = 3.42 mm, and

c, = 34.2. We can note that systematic 0.01 mm error of DR

dimensions for the DR used in expe nments causes -0.3 percent
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Fig. 4. Normalized TEOlt-mode resonaut frequencies (~/~,0~ ) versus the
L/ Lrod ratio for open-type DRs. f{= 35, b = m, L1 = O. The results have

been obtained by means of the modlfled Rayleigh-Ritz method with N = 25.

0.90

0,85

0,80

075

0,70

A

398
4000

—..
\

H-HL4/h t,,
-$= f.o~. 2.5

TABLE V

THE COMPUTED VALUES OF NORMALIZED TE018-MODE

FREQUENCIES f/f,O~, THE ELECTRIC ENERGY RATIO P.-1, A, AND

THE TEMPERATUSW COEFFICIENTS FOR MIC DIELECTRIC

RESONATOR STRUCTURES
—

f/fr.d’ pi’

I

~

.9677 !.004 130.0

.9677 ! 004 ~30.O
4 004 { 30.0

.O,c~, { 024 346.4

.8251 I W! 3463

.YU37 f .007
I.9M9 t 009

3i55
f 80.5
1793

024 z il:Q .90fo 4.048 f73f -.49{5 –,5431 +. 0346 -,49fl -.00603

~% 1.0 .7%5f f 025 5256 -9448 -.0075 -.0477 –.4$7% -.00033
Q- 2.5 .7847 f.026 5170 -.:43! - .W: - $wJ -.4873 -.00095, . . . _. ... , A“” .“. fi “Or fi n,-

<, = 35, u/h = 1.00, b = cc. The results have been obtained by means

of the modified Rayle@-Ritz method with N = 25.

is smaller than 0.4 percent and smaller than 0.15 percent of

frequency values.

As the next example, we consider open-type DRs on a dielec-

tric substrate. The results of computations using the modified

Rayleigh–Ritz method are shown in Table V. We note that for

small thickness of the substrate ( LI = 0.06h ) its permittivity has

a negligible influence on the resonant TE016-mode frequency of

the system. Even for relatively thick substrates ( LI = 0.24h ) the

:097-L’ 3- -/’ i’oooinfluence of c,. on the frequency value is not greater than 0.5

Dercent for the DR structures considered in Table V. Now we
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Fig. 5. Normalized TE018-mode resonant frequency (~/&), the electric
energy falling factor values p., and ,4-f actor values versus the distance
L, /( L – h) between the dlel&&ic resonator aud the metal plate. c,= 35,
L/Ar~ = 04, a/h =1. The results have been obtained by means of the
modified Rayleigh– Ritz method with N = 25.

error in frequency value. Such error is greater than errors of

computations.

In Fig. 5 we present the influence of the distance LI between

the dielectric resonator and the metaf plate on the TEOla-mode

frequency, pe, and A factor values. The results have been ob-

tained by the modified Rayleigl-Ritz method. As with cavity-type

resonators, the A coefficient reaches a maximum for symmetric

DR position. For the resonant system shown in Fig. 5, the

maximum value of A is approximately equal to 3500. The value

L/ A,& = 0.4 corresponds to the value of h/L= 0.294. For a

centrally filled cavity with h/L = 0.3 (Fig. 3) the value of A is

only 3 percent less than for an open-type structure, so in this case

conductor losses in the lateral surface of the cavity constitute

only a small part of totaf conductor losses. The influence of the

lateraf surface on the resonant frequency, for the case considered

here, is smaller than 0.5 percent. We find from the results shown

in Table IV (L/ A,~ = 0.4 and a/h =1) that for a ‘similar case

and L1 = O the influence of the lateral surface on A-factor values

.
consider the problem of thermal stabilization of the resonant

frequency for different DR systems. Using the numerical results

presented in Tables I–V and equations (8)–(10) we can determine

all the coefficients required for the calculation, assuming that

materiaf properties are known. It is seen from the results pre-

sented in Tables III and IV that for c, = 35 and a/h >0.5 the

Cm coefficient values are smaller than 0.01 if the distance L and

radius b are sufficiently large. Assuming that am <25 ppm/°C

(as occurs for all metals used in practice), the influence of

thermal expansion of the metaf shield on ~ is smaller than 0.25

ppm/°C in such cases. Such systems are useful for measurements

of r,, coefficients if the ad coefficient is known. For a cavity

almost completely filled with a dielectric, the values of Cm and

Cdare CM=-land Cd= O. Theoretically such systems can also

be useful for measurements if the am value is known. Since the

CM and Cd coefficients change their values with the distance L, it
is difficult in practice to get thermally stable tunable DR systems.

Theoretically it is possible to get ~ = O for tunable systems if

L1/h =0, am =a~, and r,, = – 2 ad, assuming that the mode of

interest is interior (p, = 1).

As the last example we consider TEo18-mode resonant systems

whose substrate is made of materiaf having any value of the

imaginary part of permittivity Im ( c,, ). Complex frequency

mode-matching method has been used for computations [4]. The

results of computations are shown in Fig. 6. Maximum value of

Im (c,. ) =108 corresponds approximately to silver conductivity.

We can notice that for Im(c,, ) >104 the substrate can be consid-

ered as made of metal (more precisely, the substrate can be

treated as made of metaf if its thickness is many times greater

than the depth of penetration for particular Im ( c,, ) and frequency

values). For such values of Im ( c,, ) one can use the approximate

methods of the resonant frequency and QU-factor computations

(the same as described for low-loss systems). The approximate

methods can also be used for computations if Im (c,, ) values are
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Fig 6. TEOl~-mode frequencies and unloaded QW-factor values versus the

imagmaW part of substrate permlttivity Im( c,,). The results have been
obtained by means of the complex mode-matching method with N = 5.
Dashed lines indicate QU-factor values computed by means of perturbation
theory with real mode-matching method,

small. For the systems considered in Fig. 6, a small Im ( t,,) value

means any value smaller than 1. As is seen, only in relatively

narrow ranges of Im ( c,. ) must complex frequency formalism be

used for the resonant frequency and QU-factor computations.
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Composite Inductive Posts in Waveguide—

A Multifilament Analysis

GAD S. SHEAFFER, MEMBER, IEEE, AND

YEHUDA LEVIATAN, MEMBER, IEEE

Abstract —A mukifilarnent moment solution for the armfysis of com-

posite dielectric posts in rectangular wavegnide is presented. This method

permits the analysis of inductive posts composed of dkparate regions, each

with its owo homogeneous complex permitdvity. The solution uses the

fields generated by sets of fixed-amplitude current filaments to simulate

both the field scattered by the posts and the field inside every homoge-

neous region comprising the posts. Point matching tbe electric and mag-

netic fields on the boundaries between r,egions of different perruittivity

yields the as yet, unknowo amplitudes for the current filaments. These

currents can in turn be used to cafculate field-related parameters of

interest such as the scattering matrix aod the equivalent circuit parameters.

Inductive posts of any shape, composition, size, location, and number can

be handled by this method accurately mrd with very good numerical

efficiency. The results obtained are in good agreement with the few cases

for which data are available. They also behave well in the limiting cases

studied. The solution is further applied to other situations for which no

experimental or calculated results are known.

I. INTRODUCTION

The study of dielectric waveguide posts of the inductive type is

gaining momentum, with a number of works published. In a

recent work by the authors [1], a rapidly converging moment

solution for the analysis of homogeneous dielectric posts of the

inductive type in rectangular wavegu ide has been suggested. The

solution in [1] is numerically efficient and general in that induc-

tive posts of arbitrary smooth shape, size, location, and number

can be handled. It is, however, restricted to homogeneous posts

and, furthermore, the formulation introduced there deals ex-

plicitly with a single post.

A list of useful references to a large body of work on homoge-

neous dielectric posts can be found in [1], Composite posts, that

is, posts homogeneous only in parts, have received much less

attention. Perhaps the only analysis of anything that can be

classified as a composite post problcm is the work initiated by

Nielsen [2] and pursued by Gotsis, Vafiadis, and Sahalos [3]. In

these works, a circular post composed of two concentric regions,

each with its own permittivity, was analyzed with the goal of
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