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Fig. 4. Frequency characteristics at different supply voltages. Triangles mark
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circle at —5.5 V.
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circle at —7.7 V.

IV. SUMMARY

New 2.0-8.0 GHz and 6.0-10.5 GHz dynamic frequency di-
viders have been developed. The divider was constructed with a
double-loop connected pair of differential amplifiers. The
frequency divider was operated from one voltage supply at =5V,
or —7 V with +10 percent voltage supply fluctuation. This
divider overcomes the weak points of conventional dynamic
dividers, which need two voltage supplies and precise supply
voltage control. This divider operates at a 50 percent higher
frequency than static dividers.
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Fig. 6. Input and output waveforms of the frequency divider. Top: input
waveform. Bottom: output waveform. 20 dB attenuator inserted between
D.U.T. and sampling oscillator. Vertical axis: 50 mV/div. (input); 10
mV /div. (output). Horizontal axis: 100 ps/div.
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Abstract —Comparison of the Rayleigh-Ritz method and the mode-
matching method for computations of quasi-TE,,,,-mode frequencies and
unloaded Q factors of shielded dielectric resonators is presented. Rigorous
bounds for the true quasi-TE,,, ,,-mode frequencies are assessed. Influence
of various parameters on the resonant frequencies, unloaded Q factors,
and the temperature coefficients of the resonant frequency is demonstrated
for many shielded dielectric resonator structures. Different approaches to
unloaded Q factor computations are discussed and numerically compared.
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I. INTRODUCTION

During the last two decades many rigorous methods of analyz-
ing dielectric resonators (DR’s) have been developed, such as the
mode-matching method [1]-[4], the finite element method [5], [6],
the finite difference method [7], and the Rayleigh-Ritz method
[8], [9]. However, studies comparing various methods have not
appeared in the literature vyet.

The purpose of this paper is twofold. The first is to compare
the results of computations of the resonant frequencies and
unloaded Q factors Q, of quasi-TE,,,-mode DR’s using the
mode-matching and Rayleigh-Ritz techniques. The second is to
present numerical results illustrating the influence of various
parameters on the resonant frequencies, Q, factors, and the
temperature coefficients for many shielded quasi-TE,,,-mode
DR’s. The mode-matching and Rayleigh-Ritz methods have
been chosen for analysis, since they provide lower and upper
bounds for the true resonant frequencies of lossless quasi-
TE,,, ,-mode resonant systems. Therefore in such cases the accu-
racy of computations can be rigorously assessed.

II. THEORY
A. Methods of Unloaded Q-Factor Computations

Applications of the mode-matching method and the
Rayleigh—Ritz method for computation of the resonant frequen-
cies and unloaded Q, factors of cylindrical quasi-TE,,,,,-mode
DR’s have been described in the literature, e.g. [1]-[4], [8], [9]
Since for @, -factor computations we have certain alternative
approaches, we consider this problem in detail. The resonant
system we are concerned with is sketched in Fig. 1. The most
general approach of @ -factor computation is a conception of the
complex frequency which is introduced in Maxwell’s equations
and then in the characteristic equation. This method makes is
possible, in the source-free region of the resonant system, to
determine simultaneously the resonant frequencies (f =
Re(w)/27) and Q, factors (Q,=Re(w)/2Im(w)) of the sys-
tem. All losses can be simultaneously considered. Dielectric losses
and conductor losses can be represented in the same manner as
imaginary parts of permittivities [4]. Since this method is com-
plicated for low-loss systems (nonradiating systems whose 'fre-
quencies do not depend significantly on losses), other methods of
0 factor computation are commonly used. Lossless systems
containing only perfect conductors and dielectrics are considered
as the first step in these methods, and the resonant frequencies
and the field distributions of the systems are found. Then, as the
second step, the Q, factor is computed using the definition:
Q.= o (the energy stored)/(the average power dissipated), as-
suming that for lossy resonant systems the electromagnetic field
distributions remain the same as for the lossless systems. Then we
can express the reciprocal of the Q, factor as follows [10]:

e.l=0,t+ 0! (1)
(2
(3

4)

I
Q;1= Z peltarlsl
i=1
Q.=A/R,

I
P =W /W, =([Ve,~|Ei|2dv)/( X [ elBpdo
f =1 1

A=(wélfye,lﬁlzdv)/(fslfilzds) @ ©
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Fig. 1. Cylindrical dielectric resonator on a substrate in a metal shield.
where
1 number of subregions (V) of the resonant structure

having different loss tangent (tan$,) values,
surface of the metal shield,

s surface resistance of the metal shield,

 H electric and magnetic fields of the lossless resonant
system.

xR »

The coefficients p,; (called the electric energy filling factors) and
A, which appear in the above equations, depend only on permit-
tivities and on relative dimensions of the system, so the results
for p,, and A are representative for resonators operating at any
frequency value. There are two methods for evaluation of the
integral ratios appearing in (4) and (5). In the first the electro-
magnetic fields are substituted into (4) and (5) and integrations
are performed directly. In the second, perturbation theory is
used. Cavity material perturbation theory is used for p,, compu-
tations 3] and cavity wall perturbation theory. (incremental
frequency rule) [11] for A-factor computations. In the last case,
the theory is valid only for resonant systems whose normal
components of the electric field vanish on the metal shield. We
can also mix different formalisms. For example, depending on
dielectric losses, the Q, factor can be computed using complex
frequency formalism, while the Q, factor, depending on conduc-
tor losses, can be computed by means of perturbation theory.

B. Methods of Temperature Coefficient Computation

Due to temperature variations, each material expands with its
own temperature expansion coefficient and each dielectric con-
stant changes its value with its own temperature coefficient of
dielectric constant. When we evaluate all the differentials for the
resonant system shown in Fig. 1, we obtain the following formula
for the relative change of frequency due to temperature [10]: ‘

(6)

where the «’s are the temperature expansion coefficients and the
7’s are the temperature coefficients of frequency or dielectric
constants. The C coefficients can be evaluated numerically as

af [dx If x
ST

where x denotes any parameter (dimension or permittivity).
Usually the metal shield is made of homogeneous metal and
the dielectric of the DR is isotropic so &, = a, = a,, and a, =

7 =Cra, + Coay, + Cpa, + Criap + G, + Gt

€r'er €rsers

(7
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= a,;. Then we can rewrite (6) as follows:

7 =G, + Gy + Cray + Com, + G 1 (8)
where
C,=C,+C,
C,=C,+C;.

It is well known that if all dimensions of a resonant system are
increased by a certain factor, the resonant frequency of the
system decreases by the same factor. As a result, the coefficients
C,.. C;, and C;; satisfy the following equation:

C,+Cy+Cpy=—1.

)
If two coefficients are known (one if L, = 0), the remaining one
can be calculated from (9). The coefficients C,, and C,,, are

related to the electric energy filling factors. It can be proved from
the material perturbation theorem that [3]

-1

ICol =W, /W) = P, /2- (10)
The coefficients C;, C,,, and C;; are related to the A factor. We
can prove from the cavity wall perturbation theorem that

A=wp Lf[2(IC, |+ [CulL/L +1GIL/B)] (1)

(for L; =0, |C,|L/h instead of |Cpy|L/L, must be substituted
in (11)).

III. RESULTS OF COMPUTATIONS

Most numerical results are presented in general form indepen-
dent of absolute dimensions, physical constants, and loss parame-
ters. Since for cylindrical rod DR’s, the TEj;-mode frequency,
denoted in this paper by f, 4, is usually known, we have reduced
the TE; (quasi-TEy;,) frequencies with respect to f, ., values.
Higher order quasi-TE,,,,-mode frequencies have been reduced
with respect to the velocity of light. For cavity-type resonant
systems the classical Rayleigh—-Ritz method (R) has been used
with empty cavity TE,,,,,-mode basis (100 basis functions), while
for open-type systems the modified Rayleigh-Ritz method (MR)
[9] has been used with rod resonator TE,, ,-mode basis (25 basis
functions). The radial mode-matching method (M-M) has been
used with nine functions in each of the two complementary
regions. For these numbers of basis functions all methods require
approximately the same time for computation (approximately 10
seconds on a CDC 6600 computer per frequency value). The
computer program for the modified Rayleigh-Ritz method has
been written in complex version, while two others are in real
versions. Some of the results have been obtained by a complex
version of the mode-matching method (the computer program
has been written by Sz. May).

We denote different methods of 4 and p,, factor computa-
tions as follows: C for the complex frequency method, I for the
incremental frequency (perturbation) method, and D for the
method using direct integration of the electromagnetic fields.

Table I gives results of computations for a cavity-type reso-
nator having ¢, =10, a/h=1, b/L=1, and L, =0. It is seen
that the frequency values computed by the Rayleigh—Ritz method
and by the mode-matching method agree to within 0.15 percent
for any p=h /L value. The maximum discrepancy appears for
p=0.25. Also, A-factor values agree to within 0.35 percent if the
incremental frequency rule is used in both methods. If the direct
integration method (D) is used, differences in A-factor values
obtained by the mode-matching and Rayleigh-Ritz methods are
somewhat greater. For interior modes (modes whose energy is
predominantly concentrated in the dielectric) the electric energy
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TABLE I
THE COMPUTED VALUES OF NORMALIZED TE;5- MODE
FREQUENCIES f/f,.q, THE ELECTRIC ENERGY RATIO p;'!, 4, AND
C,,, COEFFICIENTS VERSUS 4 /L FOR A DR SITUATED IN A
CYLINDRICAL CAVITY

-4

% {/frod . k A Cm

M-M R MMM RE [ RE M-MDHIRD [R{D) | M-M
000{0 0000 [00000] oo | oo o0 |6657 6657 [665.7 |- 1.000
04505390 | 0 5390 (364 37 |380,20 {380 80 [660 8 |664.2|660 8 |- 0.994
02010 7446 | O.7T448 | 1412 | 14.76 | 1480 1623.3 | 6244 | 624.5 |- 0.885
02508030 | 0.8042| 1.443| 1442| 1443|5191 (5193|5298 |-0484
03008481 {08488 | t174| 41471 ] 147T1,514.7|516.5|504.8 |- 0 065
035108253 19257 | 1118 1118 | 1418]5i6 5| 517.0| 516.8 -0.0%4
04008312 |08345( {092| 1.092| 1092|515 3| 5156|522 1|-0,059
045, 08377 | 08379 | 1074| 1.07| 107,510 8| 544 8| 5054|-0074
050108452 108454 | 1 060) 1060| 4060|504 9| 502 3| 502 0|-0.098
06008660 | 08661 | 1038 1038 | 1038|4641 464 7/460.5/-01{79
0.70{08389 [ 08989 1021 4024| 1024|3958 3966|400.8(-0.321
080109510 [ 09510 | 1 008| 1008| 1008|31414|3120|308.0[-0543
0.90{1 0304 (10304 | 1004| 1001} 1001|2400 240.5| 241 5|- 0.829
100{1 1362 |4.4362| 4 000{ 1000{ 1000{24101 | 2401] 210.11-1.000

€,=10, a/h=b/L, L = 0. M-M denotes the mode-matching method
results with N=9. R denotes the Rayleigh-Ritz method results with
N =100.

TABLE 1I
THE CoMPUTED VALUES OF NORMALIZED QUASI-TE,,,,,-MODE
FREQUENCIES wL /¢ VERSUS THE NUMBER OF Basis FUNCTIONS N
FOR THE MODE-MATCHING METHOD

KOVE
c L
TEg2q

=

TEou
407981
432412
440270
442289
442405
442393
442488
442560
442575 | 5.16872 | 729072 | 747413 | 789722 | 8 22449
443245 | 5.47032 | 7313091 749125 | 794563 8.25259

The DR 1s situated in a cylindrical cavity. ¢, =10, a /h = b/L =1.00,
h/L =025 M-M and R have the same meanings as in Table I

TEoi2 TEola

TEoa

TEo22

515487
5.15801
5.16582
5.16837
5.16866
5.16866
5.16869

749754
745886
746290
746977
747364
TAT434

790860
791231
790435
789954
799744
7.89711

819564
8.21483
8 21437
8.21784
8.22207
8.22448

715565
7.23677
T27404
728842
7.29109

70/ @ 3 b wro

filling factor values, computed by both methods, agree to within
0.1 percent. Greater discrepancy occurs for exterior modes.

Table II gives results of computations of higher order quasi-
TE,,,,,-mode frequencies for the same resonant system and p =
0.25. Convergence of the mode-matching method is investigated
versus number of basis functions (N). In the last row of Table IT
results obtained by the Rayleigh—Ritz method are shown. It is
seen that the discrepancy between frequency values obtained by
these two methods is not greater than 0.6 percent for the first six
modes. Results of higher order frequencies and the electric en-
ergy filling factor computations versus p = h /L values are shown
in Fig. 2. Computations were performed by the Rayleigh—Ritz
method. We can observe in Fig. 2 that the frequency curves show
the intervals of plateaus alternating with intervals of steep slope.
In the intervals of steep slope the p, values are close to unity and
the modes are of the interior type, while in the intervals of
plateaus the modes become of the exterior type. This phenome-
non has already been reported in [1] and [12].

Results of computations for the resonant system having ¢, = 35,
a/h=1, b/L=1, and L =0 are presented in Table III. For
p > 0.25 results of computations agree very well (similarly as for
¢, =10). For p <0.20, the differences increase. This is under-
stood, since for small p values and high ¢, values the conver-
gence of the classical Rayleigh-Ritz method becomes poor {8].
We can observe that when the DR is placed at the cavity bottom,
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Fig 2. The lowest quasi-TE,,,-mode normalzed frequencies (wL/c) and
the electric energy filling factor values p, versus the h/L ratio for a
cylindrical DR situated at the cavity bottom. €, =10, a/h =1, b/L=1.
The results have been obtained by means of the Rayleigh—Ritz method with
N =100.

TABLE III
THE COMPUTED VALUES OF NORMALIZED TE; 5-MODE
FREQUENCIES f/f,.4, THE ELECTRIC ENERGY RaTIO p!, 4, AND
C,, COEFFICIENTS VERSUS / /L FOR A DR SITUATED IN A
CYLINDRICAL CAVITY

h
/L
000
010
0125
015
020
025
030
040
050
060
070
080

R

R(1}
oo

‘F/\Frod
M-M R
0 0000 |0 0000
06692 (06692
08274 | 08332
08416 | 0.8525
08429 | 0.8470
08440 | 0.8459
0.8449 | 08459
08487 | 08491
08567 { 08568
0.8722 1 08723
09006 | 09006
09487 | 09487

A Cm

R(T) | R(D) M-M

665 7| 6657 (-1 000
663 1]|663.4|-0998
580.4 | 586 5{- 0578
2654|253 5(-0009
278.2| 286.01- 0 006
287212870 -0006
28851218.9(-0009
2%7.01 294 4|-0026
2802 279.6|- 0065
2598|257 141- 01444
220.8{223.2{-0.288
1715[1690[-0.517
080{1.0255|10255| 1 000! £.000| 1.000{4294(1298]|130.2{-0848
10011343 |11%43] 1,.000| 1.000] {.000{1412.5|142.5[1125]-1 D00

€, =35 a/h=>b/L =100, L;=0. M-M and R have the same mean-
ings as in Table 1.

MM
=<0
659.2
2754
1044
1.028
1024
1.022
1.049
1.01%
1040
+.006
1.003

R(D)
o
1443,
1548
1.097
1029
{025
1023
1048
1014
1.040
1.006
1.003

M-M(1)
065.7
661.0
428 2
286.4
2817.5
281.2
287.0
2865
299 6
2590
2495
170.4

1440.
15,37
1.04¢
1.029
1.025
1023
1049
£.044
1040
1006
1003

as was the case for the resonant systems considered so far,
A-factor values are smaller than that of the empty cavity. If the
DR is placed far from the cavity walls, A-factor values can be
much higher, as is seen in Fig. 3, which presents resuits of
computations for a DR situated centrally in a cylindrical cavity.
The Rayleigh—Ritz method has been used for computations.
Maximum A-factor values appear for cavity dimensions 5-6
times greater than the DR ones (p = 0.15-0.20). For these p
values the TE,,; mode is interior since the electric energy filling
factor values are high ( p, > 0.85). For p values smaller than 0.15,
the TE,; mode becomes exterior and A-factor values tend
rapidly to the value characteristic of an empty TE,, mode
cavity.

In Table IV results of computdtions for open-type nonradiat-
ing DR structures are presented. For all cases considered in
Table IV, discrepancy between frequency values obtained by the
modified Rayleigh—Ritz method and the mode-matching method
is not greater than 0.15 percent. A-factor values agree to within
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Fig 3. Normalized TEg ,-mode resonant frequency (f/f..q), the electric
energy filling factor values p,, and A-factor values versus the » /L ratio for
a cylindrical DR situated centrally in cylindrical cavity. €, =35, a/h =1
The results have been obtained by means of the Rayleigh—Ritz method with
N =100.

TABLE IV
THE COMPUTED VALUES OF NORMALIZED TE; 5-MODE
FREQUENCIES f/f,04, THE ELECTRIC ENERGY RATIO p, !, 4, AND
C,,, COEFFICIENTS VERSUS L/A 4 FOR AN OPEN-TYPE DR

STRUCTURE

: 1
a/h% {:/{'rod Pe A Cm
rd M-M [ RO [M-ME][ RO [RE (MMM (R [RD) [M-M
.2872( 1 0000 | 10000 |1 032+ 032 [£052] 959 9| 959.9] 3599|178
.30 | 09927 | 09927 {40334 033(1033|1077.7| 1083 3| 10716 |-.456
025|-35 | 0.9778 | 03774 |1.04214.042 | 1042 [1759.2 | 1744.7| 17544 | -.059
7140 | 0977 | 09749 {1054 [1054 |1050] 20224 | 2038.5| 20583 | -.033
.45 | 0.9685 | 0.9689 [1.064 [1.064 | 1.059 | 2081.0 | 2096.6| 21404 | -,024
.50 | 09660 | 0.9664 [1.084|4.079| 4,074 1954.0 | 2002 2| 2437.9| -.030
ATH| 10000 | 1.0000 [1.012 [1.012 [1.012] 2944 | 2944 | 2944 | -.>44
.20 | 09583 | 09583 [1.045 | 1.045 {1 016 | 445.7| 4474 | 444.7|-.189
.25 | 09357 | 0.9357 [1.0221.022(1.022| 660.4| 661.7| 6674 ~.054
050-30 | 09297 | 09298 |1026|1026|1.027| 722.0| 7232| 730.5|-.023
U135 | 09272 09276 |1.0%0 | 1.029]1.029| T37.3| 739.2| 7372|-.013
.40 | 0.9260 | 09264 [1.093[4.03211.052| 7410| 7435 7603|-.008
.45 | 0.9251 | 09257 [1.037 (10351 4034| 7439 | 7434 | 744.3|-.009
.50 | 09240 | 09254 [1.042|1.038|1.0%6| 7438 | 7415 | 744:3|-.014
A477] 4.0000 | 1.0000 [1.004]1.004 [1.004] 118.6] 119¢| 119.6|- 582
45 | 0.8984 | 08984 [1.006{1006 1007 1897 | {90.3| 190.7|~.278
.20 | 08587 | 08588 {4013 104%|1.044| 2626| 2628| 262.8|-.0M
.25 1 0.8493 | 08494 {4.048|4 048 [1.0'8| 2805| 280.7| 2804 |-.029
1.00.30 | 08461 | 08464 {1021 |1.020|1.004| 2849 | 2850| 2864 |-.015
.35 | 08445 0.8450 |1.023| 1,022 1.022| 286.4 | 2861 | 286.2|--040
.40 | 08436 | 0.8444 [1.025(1.024|1.0%4| 2859 | 2866| 293.7|-.006
.45 | 08431 | 08440 {1,026 | 1.025|4029| 2855 | 2863| 2869|-.004
.50 | 0.8427| 08437 |1028|1.025/1.026| 2864 | 2867| 3798|-.004
.1023| 10000 | 1.0000 [1,002[1002]1.002| 84.0] 840 84.0(-.720
A5 | 08314 | 08345 [1.007|1.007[1.007| 4450 1453| 1456|-.243
.20 | 07968 | 0.7969 | 1.043|1,043[1.014| 474.2| 1744] (75.0|-.082
25 0.78™ | 0.7873 | 1.048 | £.0171.018| 1814 1846| (83 6|-.035
150,30 | 07834| 07837 |1024 [1.020(1.02 | 1834 | 1834 | (gap|-.019
.35 | 07847 | 07822 | £023(1.022|1.023| 1838 184.0| 1gg4|-.014
.40 | 07808| 07814 |4.025(1.024|1024| 1839 | 184.0| 1825|-.007
.45 | 07802 | 07840 1027(4.025| 1025 184.3| 184.3] (803|-.007
.50 | 07795 | 07807 [1.029]4.026|1026] 1850 1838| 484.1|-.010

€, =35 L, =0, b=00. M-M denotes the mode-matching method
results with N =9. R denotes the modified Rayleigh-Ritz method with
N=25.

0.75 percent (except one value for a /h = 0.25 and L/A 4 = 0.50)
and p, factor values agree to within .40 percent.

The results of normalized TE, ;-mode frequency computations
versus L/, values ate presented in Fig. 4 together with
experimental data for one DR structure. Experiments have been
performed for a DR having 4 =4.00 mm, a=3.42 mm, and
¢, =34.2. We can note that systematic 0.01 mm error of DR
dimensions for the DR used in experiments causes ~ 0.3 percent
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Fig. 4. Normalized TEj;-mode resonant frequencies (f/f,,q) versus the
L /X,oq ratio for open-type DR’s. €, =35, b=o00, Ly =0. The results have
been obtained by means of the modified Rayleigh-Ritz method with N = 25.

V‘Fwd Pe A
090 7 093 4000

—

—

0.85+ 097 , ~ & <3000

N LI h£ . 23\5 ——

080 tfoge~. M @ L/ A og=04 2000

07511095 e 1000

0701 L R { L

Fig. 5. Normalized TEjs;-mode resonant frequency (f/f..q), the electric
energy filling factor values p,, and A-factor values versus the distance
Ly /(L — h) between the dielectric resonator and the metal plate. €, = 35,
L/Aoa=04, a/h=1. The results have been obtained by means of the
modified Rayleigh-Ritz method with N =25.

error in frequency value. Such error is greater than errors of
computations.

In Fig. 5 we present the influence of the distance L, between
the dielectric resonator and the metal plate on the TE ;-mode
frequency, p., and A factor values. The results have been ob-
tained by the modified Rayleigh-Ritz method. As with cavity-type
resonators, the A4 coefficient reaches a maximum for symmetric
DR position. For the resonant system shown in Fig. 5, the
maximum value of A4 is approximately equal to 3500. The value
L/X,.q =0.4 corresponds to the value of h/L=0.294. For a
centrally filled cavity with h /L = 0.3 (Fig. 3) the value of 4 is
only 3 percent less than for an open-type structure, so in this case
conductor losses in the lateral surface of the cavity constitute
only a small part of total conductor losses. The influence of the
lateral surface on the resonant frequency, for the case considered
here, is smaller than 0.5 percent. We find from the results shown
in Table IV (L/A, 4 =04 and a/h =1) that for a similar case

and L, = 0 the influence of the lateral surface on 4-factor values
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TABLE V
THE COMPUTED VALUES OF NORMALIZED TE) ;-MODE
FREQUENCIES f/f,.4, THE ELECTRIC ENERGY RATIO p, !, 4, AND
THE TEMPERATURE COEFFICIENTS FOR MIC DIELECTRIC
RESONATOR STRUCTURES

-4 —

L1/h E’rs {'/{'I'Od Fe A Cg | Cm CL{ Ter | Ters
= | 1.0].9677 | 1.004 | 130.0 |- .4384(-.5637 {+,0021 |~ 4978|~.00002
7| 2.5 9677 |1 004 | 130.0 |~ .4384|- 5636 | +.0021 |- 4978 | -.00005
006 | a|10:0] 8676 |1 004 | {500 |- 4384|-.58%2 | +.0046| - 4976 | ~.00049
[ 1.0/ 8251 | 1024 | 5164 |-.9742{~.0052 |~ 0206 | —4863 |~.00001
S| 2.5/.8251 | 1 024 | 3463 |~.9742|-.0052 | -.0206|-.4883|~.00002
i3 140.0| 8250 4.024 | 3455 |~ 9740|~. 0052 |~ 0208|4883~ 00040
=1 1.0/.9057 | 1.007 | {805 |-.4920] ~.5556 | +-0477 | -4965|~. 00055
-] 2.5/.3049 11 003 | 1793 |~ 4920|~,55% |+ 0456 |~.4958| ~.00440
024 1y [40.0] .9040 [1.048 | 1731 |-4945]|—, 54} |+.0346{-.9911 | -.00603
: E| 1.0].785( |1 025 | 5256 |- 9448|0075 | 0477 |—.4878| -. 00033
< | 2.5].7847(1.026 | 5170 |-.9437|-.0075 |- 0488 | ~.4873| ~. 00085
i [10.0 .7827|1 032 | 476.0|-.9378|~.00% |- 0545|4845 —. 00357

¢, =35, a/h =100, b=oc0. The results have been obtained by means
of the modified Rayleigh—Ritz method with N =25,

is smaller than 0.4 percent and smaller than 0.15 percent of
frequency values.

As the next example, we consider open-type DR’s on a dielec-
tric substrate. The results of computations using the modified
Rayleigh—Ritz method are shown in Table V. We note that for
small thickness of the substrate (L; = 0.064) its permittivity has
a negligible influence on the resonant TE  s-mode frequency of
the system. Even for relatively thick substrates (L, = 0.244) the
influence of ¢,; on the frequency value is not greater than 0.5
percent for the DR structures considered in Table V. Now we
consider the problem of thermal stabilization of the resonant
frequency for different DR systems. Using the numerical results
presented in Tables I-V and equations (8)—(10) we can determine
all the coefficients required for the calculation, assuming that
material properties are known, It is seen from the results pre-
sented in Tables III and IV that for ¢, =35 and a/h > 0.5 the
C,, coefficient values are smaller than 0.01 if the distance L and
radius b are sufficiently large. Assuming that «,, < 25 ppm/°C
(as occurs for all metals used in practice), the influence of
thermal expansion of the metal shield on 7, is smaller than 0.25
ppm/°C in such cases. Such systems are useful for measurements
of =, coefficients if the a, coefficient is known. For a cavity
almost completely filled with a dielectric, the values of C,, and
C, are C, = —1 and C, = 0. Theoretically such systems can also
be useful for measurements if the «,, value is known. Since the
C,, and C; coefficients change their values with the distance L, it
is difficult in practice to get thermally stable tunable DR systems.
Theoretically it is possible to get 7, =0 for tunable systems if
Li/h=0, a,, = a,, and 7., = —2a,, assuming that the mode of
interest is interior ( p, =1).

As the last example we consider TE;s-mode resonant systems
whose substrate is made of material having any value of the
imaginary part of permittivity Im(e, ). Complex frequency
mode-matching method has been used for computations [4]. The
results of computations are shown in Fig. 6. Maximum value of
Im(¢,,) =10® corresponds approximately to silver conductivity.
We can notice that for Im(¢,,) >10* the substrate can be consid-
ered as made of metal (more precisely, the substrate can be
treated as made of metal if its thickness is many times greater
than the depth of penetration for particular Im(e,,) and frequency
values). For such values of Im(e,,) one can use the approximate
methods of the resonant frequency and Q,-factor computations
(the same as described for low-loss systems). The approximate
methods can also be used for computations if Im(e,,) values are
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Fig 6. TEgsmode frequencies and unloaded Q,-factor values versus the
imaginary part of substrate permuttivity Imf(e,,). The results have been
obtained by means of the complex mode-matching method with N =15.
Dashed lines indicate Q,-factor values computed by means of perturbation
theory with real mode-matching method.

small. For the systems considered in Fig. 6, a small Im(¢,,) value
means any value smaller than 1. As is seen, only in relatively
narrow ranges of Im(e¢,,) must complex frequency formalism be
used for the resonant frequency and Q,-factor computations.
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Composite Inductive Posts in Wavegunide —
A Multifilament Analysis

GAD S. SHEAFFER, MEMBER, IEEE, AND
YEHUDA LEVIATAN, MEMBER, IEEE

Abstract — A multifilament moment solution for the analysis of com-
posite dielectric posts in rectangular waveguide is presented. This method
permits the analysis of inductive posts composed of disparate regions, each
with its own homogeneous complex permittivity. The solution uses the
fields generated by sets of fixed-amplitude current filaments to simulate
both the field scattered by the posts and the field inside every homoge-
neous region comprising the posts. Point matching the electric and mag-
netic fields on the boundaries between regions of different permittivity
yields the as yet unknown amplitudes for the current filaments. These
currents can in turn be used to calculate ficld-related parameters of
interest such as the scattering matrix and the equivalent circuit parameters.
Inductive posts of any shape, composition, size, location, and number can
be handled by this method accurately and with very good numerical
efficiency. The results obtained are in good agreement with the few cases
for which data are available. They also behave well in the limiting cases
studied. The solution is further applied to other situations for which no
experimental or calculated results are known.

I. INTRODUCTION

The study of dielectric waveguide posts of the inductive type is
gaining momentum, with a number of works published. In a
recent work by the authors [1}, a rapidly converging moment
solution for the analysis of homogeneous dielectric posts of the
inductive type in rectangular waveguide has been suggested. The
solution in [1] is numerically efficient and general in that induc-
tive posts of arbitrary smooth shape, size, location, and number
can be handled. It is, however, restricted to homogeneous posts
and, furthermore, the formulation introduced there deals ex-
plicitly with a single post.

A list of useful references to a large body of work on homoge-
neous dielectric posts can be found in [1). Composite posts, that
is, posts homogeneous only in parts, have received much less
attention. Perhaps the only analysis of anything that can be
classified as a composite post problem is the work initiated by
Nielsen [2] and pursued by Gotsis, Vafiadis, and Sahalos [3]. In
these works, a circular post composed of two concentric regions,
each with its own permittivity, was analyzed with the goal of
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